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Abstract
The x2 ln(x) dependence of the diffusion coefficient in the Fokker–Planck
equation is retrieved by means of symmetry arguments. Exact solutions of
the equation with logarithmic factors in coefficients are presented. Algebraic
and log-algebraic solutions are found. For some values of exponents they seem
to be analogues (on an interval) of log-normal distributions.

PACS numbers: 05.10.Gg, 02.20.-a, 02.20.Jr. 02.20.Rt, 47.45.Dt, 66.10.C

Fokker–Planck equations (FPEs) with variable coefficients are widely investigated and apply
in many situations. To name a few, let us recall the problem of diffusion in colloids [1],
short-time chemical reactions [2], self-propelling particles [3], plasma physics [4], financial
markets [5] and quantum chaos [6]. In each of the cases mentioned, if an FPE is invoked
(and if nonlinearities are neglected) it contains a kind of space- (or space-like) and/or time-
dependent diffusion coefficient (at least at some, usually short, timescales). Commonly, in
various applications polynomial dependences of D(x) are met.

The FPE with non-constant coefficients, usually written in the form [7–9]

ut = {D(x, t)ux}x + (F (x, t)u)x (1)

adopts a more compact shape

ũt ′ = ũyy + (F̃ (y, t ′)ũ)y (2)

when time dependence of D(x, t) is scaled out and the following change of variables is
applied (see [10] and references therein):

u = ũ√
D′(x ′)

y =
∫

dx ′
√
D′(x ′)

. (3)

In equations (2) and (3) the primed variables are those obtained after a change of variables in
the time domain (as an example, see equations (17) and (18)) and

F̃ (y, t ′) = 1

2
[ln D′(y)]y +

F ′(y, t ′)√
D′(y)

. (4)
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The issue of what sort of function of x and t may appear as diffusion and drift coefficients
in (1) has been investigated many times. The most interesting point is, apart from their
physical meaning, how they affect symmetry properties of the equation. Cicogna and Vitali [11]
considered FPEs with symmetry group locally isomorphic to the group of the heat equation
and provided the condition for six- and fourfold symmetries; they illustrated their approach
with rather undemanding cases. Stehlen and Stogny [12] collected a few examples of FPEs
customarily applied in science and Rudra [13] considered general rules for finding six- and four-
dimensional groups for x-dependent coefficients, however without referring to any particular
case. Also, potential symmetries of FPEs were discussed by Pucci and Saccomandi [14] but
the authors discussed in detail a simple example.

Recently, Spichak and Stognii (SS) [10] summarized in an elegant way methods for
symmetry properties of FPEs with variable coefficients and reported a few examples of
equation (1) that can be reduced to the heat equation or to an equation with fourfold symmetry.
The authors also allowed for a time dependence of the diffusion and drift terms. In effect,
they considered in detail the time-dependent drift term. Here, we would like to point out
that consideration of D(x, t) provides alternative, more refined information. This gives the
diffusion coefficient containing a logarithmic factor. Such a dependence, once spotted on the
grounds of symmetry considerations, can be treated by the methods presented in [10]; the other
way round seems, however, a quite intricate issue.

The most interesting cases of an FPE bearing the four (κ �= 0) or six (κ = 0) infinitesimal
generators result when F̃ (y, t) (equation (4)) satisfies the following condition:∫

F̃t dy − F̃y − 1

2
F̃ 2 = κ

(y + a3(t))2
+ a2(t)y

2 + a1(t)y + a0(t) (5)

as SS proved in [10] for a time-dependent case. For the static drift terms this has been stated
several times before [11, 18].

We explore a condition similar to formula (5) but expressed in the original variable x and
applied to the diffusion term, D(x, t). Details and formulae in extenso will be given elsewhere.
It turns out that other than polynomial dependences also admit high-symmetry cases. This
conclusion is reached by considering point symmetries for the original equation (1) while
taking advantage of results concerning potential symmetries for the constraints. In principle,
the formulae for symmetry conditions of an FPE are equivalent in x and y variables. However,
as they differ slightly in structure, they prompt us to perform distinct predictions about possible
shapes of coefficients. For example, while the symmetry requirements as stated in terms of the
drift coefficient, F , depend only on the first time derivative, similar conditions as expressed
for D depend on the second time derivative.

Applying standard methods of classical Lie group symmetry analysis [21, 22] we found
that for F = 0 a six-dimensional group of the free diffusion equation is admitted when the
following equation is satisfied:

ftt + {f −2(f −1)xx}xx = σ 2(t)f (6)

where f (x, t) = 1/
√
D(x, t) and σ(t) is an arbitrary function of time. Although equation (6)

represents only a special case of relation (5) it provides interesting clues. In a fully developed
form it reads

4σ 2(t)D2 + 2DDtt − 3D2
t = 2D3Dxxxx − D2D2

xx + 2DD2
xDxx − 3

4D
4
x. (7)

Equation (6) can be obtained as a time derivative of a simpler equation

σ̃ (t)f = ft ±
(

1

f

)
xx

(8)
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where a new function σ̃ 2(t) = σt + σ 2(t). For a special case of σ̃ = 0 the equation takes a
particularly simple form

ft = ∓(f −2fx)x. (9)

This is a specific diffusion equation belonging to the class of nonlinear reaction–diffusion
equations. Solutions to this equation, expressed in an implicit way, were discussed by Hill [16]
and King [17]. On the other hand, some of the solutions expressed by elementary functions
were found by Gandarias [18] by means of potential symmetries. Similar solutions are also
given by Kara et al [19]. The solutions are of the form

f −2 = λ(t)x2 ln [xµ(t)]. (10)

Equation (8) when written in terms of D

Dt = ±DDxx ∓ 1
2D

2
x − 2σ(t)D (11)

belongs to a class of equations known as porous medium equations and are known to possess
few analytical solutions. Recently, Zhdanov and Andreitsev [20] considered this type of
equation by means of higher conditional symmetries.

According to the guess (10), we substitute D(x, t) = 4λ(t)x2 ln(xµ(t)) into (7) obtaining
conditions for λ(t) and µ(t)

2µt = ±λµ (12a)

λtt = 1

2
λ3 +

3

2λ
λ2
t − 2σ 2λ. (12b)

Let us note that all the examples cited in [10] are those with polynomial D(x); in these
cases solutions are akin to log-normal distributions. Here, we obtained the contribution with a
logarithmic factor. An FPE with the drift term containing a factor depending logarithmically
on x was also discussed by Lehnigk [15]

ut = {b1x
2ux + (b2x − b3x ln x)u}x. (13)

The equation can be transformed into a heat equation and the shape of the resulting probability
density function is that for a log-normal distribution. Logarithmic factors are scarcely taken
into account in FPEs. Here, it is demonstrated that a logarithmic term can also appear as a
diffusion coefficient and solutions have the form of algebraic and log-algebraic distributions.

Before proceeding further let us consider the equation

ut = −{(4x2 ln x)ux}x (14)

where 0 � x � 1 and the minus sign is taken to keep the diffusion coefficient positive. The
change of variables (3) gives y = √− ln x, D(y) = 4y2e−2y2

and equation (14) adopts the
form of that describing the Rayleigh process

ũt = ũyy −
[(

1

y
− 2y

)
ũ

]
y

(15)

and as the condition (5) reads

F̃y +
1

2
F̃ 2 = − 1

2y2
+ 2y2 − 4 (16)

this indicates that the symmetry group is four-dimensional. On the other hand, the equation
with a time-dependent D (without loss of generality λ(t) can be set to unity in (10))

ut = −4{x2 ln [xµ(t)]ux}x (17)

which after a change of variables x ′ = xµ(t), t ′ = t takes the form

ut ′ = −4{x ′2 ln x ′ux ′ }x ′ +
µt ′

µ
x ′ux ′ . (18)
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This equation can be mapped into a heat equation for a particular value of µt ′/µ = 2. This is
an example of temporal dependence of D affecting symmetry of FPE. This is rather unusual as
the time dependence (according to equation (5)) cannot change the dimension of the symmetry
algebra. Here, it seems to be accidental and is related to the presence of the logarithmic factor.

Now, let us consider a balance between the logarithm-containing contributions in both
diffusion and drift terms. When transformation (3) is applied to the equation

ut = −{(4x2 ln x)ux}x + {(Ax + Bx ln x)u}x (19)

the problem of finding solutions to this equation is equivalent to solving the following equation:

ũt = ũyy +

{(
α

y
+ βy

)
ũ

}
y

(20)

where α = −(2 + A)/2, β = (B + 4)/2.
Special cases appear for values ofα equal to 2 and 0. The valueα = 0 reduces equation (20)

to a regular Ornstein–Uhlenbeck case while α = 2 relates to a Rayleigh-type process, an
equation reducible to the heat equation.

For α �= {2, 0} equation (20) is an extension of equations describing the Rayleigh
or Rayleigh-like processes. Its stationary solution has the form of the Wigner–Dyson
distribution [6]

ũs(y) = y−α exp

(
−β

2
y2

)
. (21)

In terms of the original variable, x, the distribution reads

us(x) = u0x
B/4(− ln x)A/4. (22)

The shape of this function strongly depends on the values of parameters A and B. For both A

and B negative the function has singularities at the ends of [0, 1] interval, whereas for positive
values its shape resembles that for the log-normal distribution and can be normalized.

Having obtained an integrable form of FPE with the help of symmetry analysis we can
safely look for some exact similarity solutions. The generators spanning the four-parameter
Lie group of equation (20) are

T = ∂t U = u∂u

V = exp(2βt){T + β(α − βy2)U + βy∂y}
W = exp(−2βt){T + βU − βy∂y}

(23)

and commutation relations for them read
[V,W ] = −4βT + β(2 − α)U

[V, T ] = −2βV [W,T ] = 2βW

[V,U ] = [W,U ] = [T ,U ] = 0.

(24)

Looking for solutions invariant under action of V for the symmetry variable s =
y exp(−βt) we have to solve an equation

2s2Qss + αsQs − αQ = 0 (25)

for the function Q(s) satisfying

ũ(y, t) = Q(s) exp(−αβt − βy2/2). (26)

On using the general form of solution to equation (25)

Q(s) = C1s + C2s
−α (27)

we are left with the solution

ũ(y, t) = {C1y exp(−β(1 + α)t) + C2y
−α} exp(−βy2/2) (28)

which also contains the stationary solution (21).
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On the other hand, as to solutions generated by linear combinations of generators we found
an interesting solution belonging to the V +W symmetry. Solving the system of characteristic
equations we obtain for the similarity variable

s = y2

cosh(2βt)
(29)

a solution ũ(y, t) in the form

ũ(y, t) = Q(s)[cosh(2βt)](1−α)/4 exp

{
β

2

(
(1 − α)t − y2

2
(1 + tanh(2βt))

)}
(30)

with function Q(s) satisfying

2s2Qss + s(1 − α)Qs +

(
α

2
+
β2

8
s2

)
Q = 0. (31)

General solutions of equation (31) are expressed in terms of linear combinations of Bessel
functions of fractional order. Hence, for the similarity variable as given by (29) the solution
of equation (20) reads

ũ(y, t) = y(1−α)/2[cosh(2βt)]−1/2

{
C1jν

(
βs

4

)
+ C2yν

(
βs

4

)}

× exp

{
β(1 − α)t

2
− βy2

4
[1 + tanh(2βt)]

}
(32)

where jν(z) and yν(z) are Bessel functions of non-integer order with the value of index
ν = −(1 + α)/4; C1, C2 represent other constants of integration.

In summary, we have found a class of FPEs with a logarithmic inhomogeneity of the
diffusion coefficient. Such an extension of a common quadratic dependence seems to be
‘natural’ as it is provided by symmetry arguments although on the physical side it may be
difficult to justify it from a Langevin equation [7]. Curiously enough, such dependences have
been spotted several times in various contexts. For example, Jeffrey and Onishi [23] found a
(1 − x)2 ln(1 − x) dependence of the mobility function for diffusing hard spheres. A similar
shape of D(n) appeared for quantum diffusion [24]. Also, closer inspection of the second
moment as estimated from a conditional probability density function for increments in price
changes [25] shows deviations from a quadratic dependence that may suggest a logarithmic
component for small #x.
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